
Asymptotic Decision Theory

October 19, 2016

1 Motivation
Asymptotic decision theory can be thought of as the proper successor to modal
decision theory using logical inductors. We will define notions of agents and
decision problems which are strong enough to define most of the problems we
normally think about, including multi-agent games.

The goal of asymptotic decision theory is to define a limit-computable decision
procedure D such that for all agents A, D doesn’t do predictably worse than
A on any problem forever. The aim of this post is to make that statement
precise, as well as to give an algorithm which satisfies the property under further
assumptions.

2 Notation blurb
Except where I state otherwise, I’ll be using the notation from Tsvi’s post.

Given a measure µ and a subset A of R, I will use L1
Apµq to refer to the space

of functions whose image lies in A which are absolutely integrable with respect
to µ under the L1 norm.

In this post, we will write `8t pVtq to denote bounded sequences over a sequence
of norm spaces Vt under the dependently typed translation of the sup norm.

For topological spaces A and B we will write A Ñ B only to refer to
continuous functions from A to B.

Lastly, we will refer to the types of definable and computable elements of a
type A as defnpAq and exprpAq, respectively. For purposes of continuity, both
will be considered under the subspace topology.

3 Definitions
3.1 Agents
We will use the word agent to refer to sequences of distributions over actions.
More precisely, we will define the type

A :“ defnp`8t pL1pPt, 2qqq
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We will write agents as A, and their time-t behavior as At.
Any enumerable sequence of decidable sentences φt can be thought of as an

agent which at time t takes action 0 in worlds where φt is true and 1 where φt is
false. In fact every (computable) agent has this form, since we can take φt to be
the sentence JAtK “ 1 and recover the behavior of A exactly.

3.2 Embedding functions
In this post we will consider decision problems given by an embedding function
with the following type:

E :“
ź

t:N`

pdefnpL1pPt, 2qq Ñ defnpL1pPtqqq

such that for any F : E we have

sup
t:N`

sup
v:defnpL1pPt,2qq

sup
w:2ω

|Fnpv, wq| ă 8

and
´8 ă inf

t:N`
inf

defnpv:L1pPt,2qq
inf
w:2ω

|Fnpv, wq|

with the added property that F is computable on computable inputs.
Note that each F induces a map

pvt ÞÑ Ftpvtqq : `8t pdefnpL1pPt, 2qqq Ñ `8t pL
1pPtqq

which we will also write as F .
In order for this map to be continuous, we will restrict ourselves to the

uniformly continuous embedding functions. More formally, we will for any ε
want there to be a δ such that for all t,

EPA
t r|At ´Bt|s ă δ

implies
EPA
t r|FtpAtq ´ FtpBtq|s ă ε

Some example problems

To get a better feel for how to define decision problems in this environment, we’ll
go through a couple of examples. 5 and 10 is a fairly simple problem to define,
so we’ll start there.

510tpAq :“ 5` 5A

We can also define prisoner’s dilemma against a sequence of opponents Ot :
L1pPt, 2q ý

PDOt pAq :“ 5A´ 10OtpAq

And we can define
NicerBotεt pAq :“ flippEPA

t rAs ` εq
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Defining agent simulates predictor is similarly easy.

asptpAq :“ 10EPA
t rAs ´A

That this is an adequate formalization of agent simulates predictor might not be
immediately obvious, but it turns out to test for the same aspects of a decision
theory.

We can also define coordination problems. Let Ot : L1pPt, 2q ý. Then

CProbOt pAq :“ |A´OtpAq|

3.3 Decision Theories
While these agents can have arbitrary (definable) behaviors, what they cannot
do is react to being placed into different environments.

To talk about decision theories, we will have to define a notion of agent which
is allowed to take its decision problem as input.

We will define the type of decision theories as follows:

DT :“
ź

t:N`

pdefnpL1pPtqq Ñ L1pPt, 2qq

where the first argument is code for the utility function of the theory.
In order to embed a decision theory in a universe, we will need to make use of

the diagonal lemma to thread together the embedding function and the decision
theory. We will define a function pack and another function embed by mutual
recursion as follows:

packpD : defnpDT q, F : defnpEqq :“ xDpembedpD,F qqy
embedpD : defnpDT q, F : defnpEqq :“ F ppackpD,F qq

where operations are all applied dimensionwise.

4 Fairness
Informally, a fair decision problem is one which does not punish you for details
of your code that don’t affect your action or change the difficulty of predicting
your action.

We will call an embedding function F fair iff for any ε ą 0, there exists a
δ ą 0 such that

lim
tÑ8

EPA
t r|At ´Bt|s ă δ

implies
lim
tÑ8

EPA
t r|FtpAtq ´ FtpBtq|s ă ε

for all A,B : A

3



To see that this corresponds to the notion of fairness I gave above, observe
that fairness implies that for any A,B : A, if

lim
tÑ8

EPA
t r|At ´Bt|s “ 0

then
lim
tÑ8

EPA
t r|FtpAtq ´ FtpBtq|s “ 0

The fact that strong fairness looks so much like a continuity property is
important. In fact, fairness is a consequence of continuity.

Theorem 1. All (continuous) embedding functions are fair.

Proof. Take ε ą 0. Let A,B : A and F : E .
By the continuity of F , there must be some δ ą 0 such that, for any C,D : A,

‖C ´D‖ ă δ Ñ ‖F pCq ´ F pDq‖ ă ε (4.1)

Taking this for our δ, we may assume

lim
tÑ8

EPA
t r|At ´Bt|s “ η ă δ (4.2)

Take θ ą 0 such that η ` θ ă δ By (4.2), there must exist some nθ such that
for all t ą nθ,

EPA
t r|At ´Bt|s ă η ` θ

from which we can define

Aθt :“
#

At for t ą nθ

0 otherwise

with Bθ defined analogously, such that

‖Aθ ´Bθ‖ ă η ` θ

Thus by (4.1), we have
‖F pAθq ´ F pBθq‖ ă ε

which implies

lim
tÑ8

EPA
t r|FtpAtq´FtpBtq|s “ lim

tÑ8
EPA
t r|FtpAθt q´FtpBθt q|s ď ‖F pAθq´F pBθq‖ ă ε
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5 Optimality Conditions
We would like a general criterion by which to measure the performance of a
decision theory. In this section, we will discuss some such criteria, as well as In
our setting, this sort of measure turns out to be definable.

We will use the term asymptotic dominance for several different properties of
the form “A doesn’t lose to any B forever”.

We will also say that an agent A asymptotically dominates some class of
agents B on an embedding function F iff for any B P B,

lim inf
tÑ8

EPA
t rFtpAtq ´ FtpBtqs ě 0

Similarly, we will say that a definable decision theory D asymptotically
dominates B on F iff packpD,F q asymptotically dominates B on F for every
definable F P F .

6 Optimality for Convergent Problems
One interesting result is that, for any enumerable class of problems and agents
satisfying a certain condition, it is possible to define a decision theory that
dominates those agents on those problems.

Informally, we will do well on problems that are essentially one-shot against
agents that are essentially liar sentences. To formalize this, we will instead
speak of convergent agents and problems. We will call an agent A convergent iff
limtÑ8 EPA

t rAs exists. We will call a problem F convergent iff limtÑ8 EPA
t rFtpAtqs

exists for all convergent A.

6.1 Soft-Argmax and defining optimal agents
Defining an agent that does well is fairly simple. Just let

optimal_agenttpF,Aq :“ arg maxaPA EPA
t rFtpAtqs

The problem with this definition is that arg max is not continuous, and thus
we won’t necessarily be able to define problems which include this agent in a
meaningful way. Since we are interested in multi-agent as well as single-agent
problems, this won’t quite do. We will instead define a continuous analogue to
arg max which takes a fuzziness parameter.

Let F be a problem and A be a finite collection of agents. We will define

sadtεpF,Aq :“ Arsoft_argmaxεpi ÞÑ EPArF pAiqsqs

Where convenient, we will refer to limεÑ0 sadtε as sadt.

Theorem 2. sadtpF,Aq asymptotically dominates A on F .
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Algorithm 1: Definition of soft_argmaxε
Input: Q, a list of n rational numbers
Output: A distribution over m ă n
d := δ(0)
for 1 ď i ă n :

let exp =
ři´1
j“0 djQj

let pq = IndεpQi ą expq
d := pq ˆ δpiq + (1 - pq) ˆ d

return d

Proof. Consider the list A1 formed by quotienting A over the relation

A „ B Ø lim
tÑ8

ˇ

ˇEPA
t rFtpAtq ´ FtpBtqs

ˇ

ˇ “ 0

Then for rAs and rBs in A1, there will be some δA,B ą 0 such that

δ ă lim
tÑ8

ˇ

ˇEPA
t rFtpAtq ´ FtpBtqs

ˇ

ˇ

and, since there are finitely many rAs P A1 there must be a least such δ for all
A,B, which we will call η. Let rAs be the class with maximal limiting expecting
utility. It must then be the case that

lim
tÑ8

EPA
t rFtpAtq ´ FtpBtqs ą η

for every A P rAs, B R rAs. Let A be the first element of rAs in A. Since every
class will be separated by at least η in the limit, sadtηpF,Aq will eventually be
a distribution over just rAs. And, since A „ A1 for every A,A1 P rAs, by the
definition of soft_argmax it must be the case that

lim
tÑ8

EPA
t r|sadtηpF,Aqt ´At|s “ 0

which by fairness implies

lim
tÑ8

EPA
t r|FtpsadtηpF,Aqtq ´ FtpAtq|s

And, since A is a member of the maximal class rAs, sadtηpF,Aq can do no worse
in the limit than any other agent in rAs.

Since η was arbitrary beneath the least δA,B this must also hold for every
ε ă η, and thus by fairness sadt must have the same asymptotic properties.

7 Learning the Embedding Function
We will again assume convergence of agents and embedders in this section. While
sadt achieves dominance, it only does so with the input of an embedding function
determining its counterfactuals. We would like to design a more naturalized
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Algorithm 2: Definition of ditto decision theory (written ddt)
Input: A rational number ε
Input: A list of convergent embedders F
Input: A list of convergent agents A
Input: A universe U
let me = xddtεpF ,A, Uqy
let Pi “ IndεpEPAr|F pmeq ´ U |s ă εq
let Ai “ sadtεpFi,Aq
let ∆ “ soft_argmaxεpi ÞÑ PiEPArFipAiqsq
A∆

algorithm, which can learn the correct way to locate itself in the environment.
In this section we will exhibit such an algorithm and prove optimality.

Intuitively, this algorithm searches for all the possible ways of embedding
itself such that it would expect to get the same utility in that world that it
expects to actually get, and picks the one where it’s possible to do the best.

We will again use ddt to refer to limεÑ0 ddtε where convenient.

Theorem 3. ddtpF ,Aq asymptotically dominates A on F .

Proof. (Note: pieces of this proof are a bit suspect, but I expect the result to still
hold)

Let ρ be the function

ρpiq “ lim
tÑ8

EPA
t rFipsadtpFi,Aqqs

Let ă be the well-order defined by

i ă j Ø pρpiq ą ρpjqq _ pρpiq “ ρpjq ^ i ă jq

The proof will proceed by induction on ă. Take Fi P F . Suppose ddtpF ,Aq
dominates A on all Fj with j ă i. We will show by cases that ddtpF ,Aq
dominates sadtpFi,Aq on Fi.

First, suppose ρpjq ą ρpiq for all j ă i. Then since there are finitely many
such j, we can pick an ε small enough that

ρpjq ´ ρpiq ą ε

for every j ă i. Then either we do better than sadtεpFi,Aq, or their plausibility
will approach 0 and ∆ will converge to a δ-distribution on i, which by fairness
implies we perform exactly as well as sadtεpFi,Aq in the limit.

On the other hand, let J be the set of j ă i such that ρpjq “ ρpiq. If Fj has
zero plausibility for every j P J , then ∆ will converge to a δ-distribution on i.

On the other hand, suppose Fj has positive plausibility for some j P J . By
hypothesis, we dominate sadtjpFj ,Aq on Fj . It must then be the case that

lim
tÑ8

EPA
t rFjpddtεpF ,Aqqs ě ρpjq “ ρpiq
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Thus in order for Fj to have nonzero plausibility, it must be the case that

lim
tÑ8

EPA
t r|FipddtεpF ,Aqq ´ FjpddtεpF ,Aqq|s ă ε

and thus in the limit as ε goes to 0 we must do as well in Fi as in Fj .

8


	Motivation
	Notation blurb
	Definitions
	Agents
	Embedding functions
	Decision Theories

	Fairness
	Optimality Conditions
	Optimality for Convergent Problems
	Soft-Argmax and defining optimal agents

	Learning the Embedding Function

